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drDb| 3 Main Points

—

Not all black shales accumulate under the same
depositional conditions (applies to the basin and
stratigraphic scale for a particular mudstone as well)

. Deep stratified basins, shallow energetic environments, coastal
upwelling, restricted lagoon, lacustrine

Not all elemental interpretations are straight forward and
they should be used in the context of the entire data set

Likewise elemental data sets should be combined with
other data sets to understand and predict reservoir facies
distribution

. Standard core analysis, sedimentological analysis, field studies




Purpose of the Work

Production Mechanisms

* In many unconventional reservoirs, organic matter hosts the majority
of porosity.

 Indeed, some reservoirs depict a strong correlation between gas-filled
porosity and TOC.

* Reservoirs are self sourcing, the original TOC represents the starting
material for hydrocarbon generation.
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dl‘b Purpose of the Work

Visual Characterization of Organic-rich Mudstone
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Quantitatively there is a <3% difference in the
color of these formations.
These rocks range from oxic/dysoxic to
anoxic/euxinic.
Visual inspection alone is not enough to
understand the depositional environment.
While extremely useful, even sedimentary
structures (bedding laminae, erosion surfaces,
fossils, etc.) cannot definitively inform on the
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Water oxygenation conditions
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* Three chemical species play a role in the oxidization of
organic matter:
* Oxygen
. . * Nitrate
Oxygenation regime . Sulfate
Oxygen . A hhE E ] ) * Eukaryote and prokaryote communities use oxygen to oxidize
(ml/1) facies Biofacies organic material until the supply of oxygen is dissolved.
>2.0 Oxic Aerobic
2.0-0.2 Dysoxic Dysaerobic * Denitrifying bacteria then consume nitrate until it is dissolved.
2.0-1.0 moderate , _ o _
1.0-0.5 * The reservoir of sulfate is used to oxidize organic matter by
ey Severe sulfate-reducing bacteria.
0.5-0.2 extreme
0.2-0.0 Suboxic Quasi-anaerobic ¢ Finally, organic matter can undergo fermentation before
0.0 Anoxic Anaerobic preservation.
0.0 (H2S) Euxinic

Modified from Tyson and Pearson, 1991

These processes further influence the degree to which certain
elements remain in the water or accumulate in sediment.

These are know as Redox Sensitive Trace Elements (RSTE).




Redox sensitive trace elements
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Geochemical proxies for redox conditions

Dominant Biogeochemical
electron

» acceptor Proxy
ENERGY + HgPO, + 16 HNOg + 106 CO2 + 122 H;0= o | 0,
[(CH20)106(NH3)16H3PO4] + 138 0, ’ Mn
‘ Fe,Mn
(CH20)106(NH3)16H3PO4 |+ 138 0, < H3gPO4+ .
’/ 16 HNO3 + 106 CO, + 122 Ho0 + ENEREY 3 V+Cr
(CH20)106(NH3)16H3PO,| + 84.8HNO3'S) Mo
‘ so. || FesS
411 (DOP)
0345
4 CH,0| | §13C
MENTATIO PRESERVED OC C/N, C/P
<TA o W >TiAl Ti/Al
>Si/Al Si/Al

' Sageman et al., 2003




Geochemical proxies for redox conditions

Manganese (Mn) and oxygen

EGR (API) Mn (ppm)
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Al normalization and enrichment factors
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. Al cross plotted against clastic-derived elements Ti, Zr, and K.

. Note that while much of Si defines a clastic trend, the
relationship is more nuanced.

. While Al, Ti, Zr, and K demonstrate positive covariance, their
relationships to Al (dominantly a signal for clay) provides insight
into the grainsize and energy of sediment delivered to the
basin.

Enrichment Factor (EF) =

Element, .

/ Al

sample

Eleme ntaverage shale

/ Al

average shale

Elemental data commonly cast as an enrichment

factor.

The element is normalized to the Al content of the

sample

*  Accounts for an increase in abundance due
to increased sediment supply

The element/Al is then normalized to the average
shale value (Wedephol 1971, 1991).
. Unity implies elemental abundance is

typical of shales

. EF>3 implies significant enrichment of that

element

. EF<1 suggests depletion of that element




d1rb| Uranium and Molybdenum profiles
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e Moand U

* Redox sensitive metals especially useful for
paleoenvironmental and hydrographic studies

* Presentin low concentrations in the upper crust-
* Mo ~3.7 ppm
e U~2.7ppm (Taylor and McLennan, 1985)
* Both exhibit conservative behavior under oxic conditions;

* Both elements have long residence times in seawater
* Mo ~0.78 MY
* U~0.45 MY

e Both exhibit roughly equal concentrations in seawater globally:
* Mo/U =7.53 molar ratio — Pacific Ocean
e Mo/U =7.90 molar ratio — Atlantic Ocean

* Both exhibit low concentrations in plankton — enrichment in
sediment can be related to authigenic uptake from seawater;
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Uranium and Molybdenum profiles

Significant differences

U uptake is linked to organic carbon content
(TOC) and occurs by diffusion across the
sediment-water interface...organic matter
serves as a sorbant...sedimentation rate is
very important to this

Mo uptake by sediment requires the
presence of H:S (euxinic conditions) and can
be accelerated by particulate Mn-Fe-
oxyhydroxide shuttle (U is unaffected by
this); less covariance with TOC




Uranium and Molybdenum profiles
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d1rb| Uranium and Molybdenum profiles
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Uranium and Molybdenum profiles
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d1rb| Uranium and Molybdenum profiles
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d1rb| Uranium and Molybdenum profiles
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d1rb| Uranium and Molybdenum profiles
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d1rb| Uranium and Molybdenum profiles
| Dunkirk Shale
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Uranium and Molybdenum profiles
Marcellus Shale
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dl‘b Interpretations that are not straight forward
= Iron sequestration

* The average shale value for Fe/Al is 0.55
* Diagenesis in shelf environments produce —_—
dissolved Fe Il, some portion of which is

> — — Fe(ll),
exported to the bottom water Fe(oxyhydrjoxide ——3p m m o N K
~
* In the euxinic bottom water, this Fe is Suboxic J% ~— ~— |
i ) ) iagenesis: . Fe(ll) 3~ v o\ o
sequestered into the sediment in the form dissimilatory Fe reduction, vy
. . . . Fe(oxyhydr)oxides \ | |
of syngenetic/diagenetic pyrite by minor H,S R
_ . i H,S
iﬁ_." & g * * *
5 Fe|| Al Syr;)gilerQ:tic
precipitation

Fe,|| Al

10um 1800X ’ *DOP can be calculated from elemental data, but requires assumption that all Sis in pyrite



dl‘b Interpretations that are not straight forward
| !ron sequestration

* Two observations can be made about Fe/Al in euxinic settings:
* Bacterial sulfate production is ubiquitous, therefore sedimentary pyrite concentrations and organic carbon are not linked
to one another (although both are often elevated)

e Under oxic water conditions sulfide production is limited to anoxic pore waters and therefore entirely dependent on
the local availability of organic carbon.

A Euxinic unit
a 8 - O Non-euxinic

* Fe/Alincrease and Fe is no longer only a function of Fe delivery to the
basin.
* Fe/Al exceeds 0.55 and the trend is decoupled from Al.

Al (wt.%)

Lyons and Severmann, 2006




dl‘b Interpretations that are not straight forward
| !ron sequestration
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TDO| Remobilization of elements

Burn Down

Burn down has been offered as a way of explaining high concentrations of RSTE in black shales assumed to have been
deposited under oxic conditions

Burn down is a process by which an oxidizing front moves down through the sediment pile
e This acts to dissolve and mobilize elements that are conservative under oxic conditions.

* When the front stops moving these elements precipitate out in anoxic pores of sediment at higher concentrations

RSTE concentration — RSTE concentration — RSTE concentration — RSTE concentration —

To T1

Oxidizing front

Oxidizing front

Oxidizing front




Remobilization of elements

Burn Down
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dTb| Purpose of the Work

f Where is the reservoir?

TOC LOG,, TOC
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Redox conditions can influence exploration,
drilling, and completion techniques.

Under oxic conditions, organic matter is preserved
by rapid burial.

* This removes organic material from zones of
oxidation and scavenging by benthos

* Under such conditions organic material is
usually greatest in the thickest parts of the
sedimentary pile, which may also include the
greatest clay content.




dTb| Purpose of the Work

f Where is the reservoir?
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Redox conditions can influence exploration,
drilling, and completion techniques.

Under anoxic conditions, dilution controls organic
matter concentration.

 Alack of oxygen and benthos increases the
preservation potential of organic matter

 If productivity is viewed as a constant, then
organic matter concentration decreases with
increasing sedimentation rate.
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(Dys)oxic organic-rich deposits

Point Pleasant Limestone

POINT PLEASANT LIMESTONE
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* Most RSTE below levels of e Shell beds not transported * Muds are well sorted
detection e Poorly sorted * Often show fining-up sequences
* Articulated fossils present * Represent event beds
* Note scale change from  Grew in situ e Obrution (suffocation) layers
previous plots (down one order e Time-rich intervals * Time-poor intervals

of magnitude)
Rapid deposition in an (dys)oxic environment led to the preservation of TOC




(Dys)oxic organic-rich deposits

Point Pleasant Limestone
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Conclusions

Not all interpretations are straight forward — integrate
both elemental and sedimentological data sets

Remember sample size — sidewall cores and core
plugs can represent 100s to 1000s to 10,000s to even
100,000s of years
* This results in a time-averaged interpretation of
the rock record

Elemental relationships are not universal. For
example, a correlation between uranium and TOC in
one shale may not be applicable or exist in another
shale.
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